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Madrid, Spain 
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Abstract. The usml second harmonic generation effective Hamiltonian is shown to be 
equivalent to a one-dimensional Schr6dinger operator with a sextic polynomial potential. This 
opemlor belongs to the class of quasi-exactly solvable models. for which a finite number of 
eigenvalues and eigenvectors can be determined exactly. A Jeffreys-Wenbel-Kramers-Brillouin 
analysis provides accurate asymptotic expansions for these eigenvalues in the limit of large 
unpemrbed energies. 

1. Introduction 

Several nonlinear optical processes of interest can be described by a simple effective 
Hamiltonian with two degrees of freedom and cubic terms in the creation and destruction 
operators, 

Second harmonic generation, coherent spontaneous emission and down conversion are 
typical examples [ I 4  Although the dynamical problem generated by equation (1) can be 
reduced to the diagonalization of a finite-dimensional matrix (see section 3.1), convenient 
analytic expressions for the eigenvalues and eigenvectors are not known. The exact solution 
can be written in terms of the algebraic Bethe ansatz 171, but the resulting formulae are too 
unwieldy for practical calculations, and several approximations have been devised relying 
on specific features of each particular problem under study [1,2,4,8,9]. 

The aim of the present paper is twofold. First we will show that the Hamiltonian (1) 
is equivalent to a one-dimensional Schrodinger operator with a polynomial potential, a fact 
that to our knowledge has not been noticed and exploited in previous work. Then we 
will perform a semiclassical Jeffreys-Wentzel-Kramers-Brillouin (IWKB) analysis of the 
one-dimensional Schrodinger operator to obtain asymptotic formulae for the eigenvalues 
valid in the limit of large unperturbed energies. As a side issue, we will also touch 
briefly upon the problem of classical perturbation theory and quantization of dynamical 
systems in action variables [ 10,l I]. The outline of the paper is as follows. In section 2. 
devoted to the classical dynamics of the system, we use a linear canonical transformation to 
simultaneously remove the two-to-one resonance in equation ( I )  (characteristic of second 
harmonic generation) and to separate the problem into two one-dimensional Hamiltonians. 
The first one describes the unperturbed harmonic oscillation, while the second is a nonlinear 
oscillator which has a classical normal form that can be readily calculated. In section 3 we 
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rewrite the quantum Hamiltonian in the Bargmann representation, study the reduction to a 
finite-dimensional matrix eigenvalue problem, and prove the equivalence of the perturbation 
to a one-dimensional Schrodinger operator with a sextic polynomial potential which has 
coefficients that depend on the unperturbed energy. This double-well potential turns out to 
be one of the quasi-exactly solvable systems studied by Turbiner and Ushveridze [ 12,131. 
Section 4 is devoted to the NKB analysis of :he one-dimensional Schrodinger equation and 
the subsequent semiclassical formulae for the eigenvalues. Terms up to fourth order plus 
an exponentially small correction due to tunnelling between the two wells are calculated, 
and the resulting first-order series is compared with the Bohr-Sommerfeld quantization of 
the classical normal form derived in section 2. The accuracy of the different expansions is 
illustrated by a numerical example with unperturbed energy in the range of physical interest. 
The paper ends with a brief summary. 

G Alvarez and R F Alwrez-Esirada 

2. Separation of the classical Hamiltonian 

Our starting point is the following Hamiltonian written in Cartesian coordinates, 
1 

H = - ( p : + x : )  + p:+X;+ [ ( x ?  - P ? ) X Z  + (xipi + pixi)pz]. (2) 

Hereafter Ho will denote the unperturbed harmonic part, and V the perturbation which has 
a magnitude that is proportional to the coupling constant g. The following developments 
are based on the fact that both classically and quantum mechanically the unperturbed 
Hamiltonian and the perturbation commute: 

2 .Jz 

[Ho* VI = 0 (3) 

where the brackets denote the commutator in the quantum case and the Poisson bracket 
in the classical case. We begin the classical study by switching to the usual action-angle 
variables of the harmonic oscillator (i = I ,  2), 

xi = m c o s  Bi (4) 
pi =&sin$; (5)  

in which the Hamiltonian (2) has the standard form 

H = 3 + 2 5  + 2 g J I p  COS(2Vi - B d  (6) 
displaying the second distinctive feature of this system, the two-to-one resonance that makes 
it a suitable model for second harmonic generation. This resonance can be removed by a 
linear transformation to new canonical variables (81, j l )  and (Qz, j 2 )  with generating function 

(7 ) Fz(91, 92, i l  I j z )  = (281 - Bz) j l  + V z j z .  

The old and new variables are related by 

and the transformed Hamiltonian is 

H = 2 j z + 4 g j l f i c o s ~ l  
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where the coordinate 02 is cyclic, j 2  is a constant of the motion, and the perturbation energy 
will be denoted by E: 

E = 4 j l f i c o s 0 1 .  (13) 
Note that j, is half the unperturbed energy, and for a fixed value of this magnitude the 
perturbation energy is bounded by 

in agreement with the result obtained by a different methoain [9]. In this allowed energy 
region the perturbation Hamiltonian describes an oscillation whose phase curves in the 
(el, j l )  phase plane are ovals with centre (0,2j2/3) and vertices (0, j J ,  (Om, 2j2/3), 
(0, j:), and (-Om, 2j2/3), where cosO,, = EJE,, and the expressions for j: will be 
given below (if E = &Emm the oval degenerates to the point (0,2j2/3)). The phase map 
is symmetrical around E = 0 and for -E,- < E 6 0 (or 0 < E < E-) it is somewhat 
similar to the map of the usual pendulum. Our main goal in this section is to calculate 
the classical normal form of this one-dimensional Hamiltonian for the pair of canonical 
variables (01, j l ) .  The strategy will be to obtain first an analytic expression for the period 
of the oscillation T ( E ) ,  and then to integrate the equation aE/aJl = 2rr/T(E) that relates 
the period to the good action variable J l .  Finally we will have to reverse the resulting 
relation to obtain the perturbation energy as a function of the action, something we achieve 
by inversion of an appropriate series expansion. The details are as follows. Eliminating 
cosOl between equation (13) and the equation of motion for j , ,  

we can write the period of the oscillation in terms of the Gauss hypergeomemc function F ,  

where j: and jp  are the roots of the cubic polynomial in the denominator of equation (16). 
It is convenient to introduce the small parameter 

in terms of which the roots j: and j p  can also be written as combinations of hypergeometric 
functions, 

and the new action variable J I  is given by 
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Everything in this expression is ready for direct series expansion of the integrand in powers 
of E and subsequent term-by-term integration. However, before proceeding we will make 
three slight modifications. First we will rename j2  = 52, since then (J1, J z )  are good action 
variables for the full Hamiltonian. Second, from equations (19) and (20) one sees that in 
equation (22) the actions 51 and 5 2  appear only in the combination 

Consequently, we will pull out the appropriate factors in equation (22) and obtain an 
expansion for J = J ( E ) .  This series, in turn, has to be reversed to obtain E = E ( J ) ,  
and then substituted into equation (18) to obtain the perturbation energy E as a function of 
the actions. We will give the result of this lengthy but straightforward calculation in two 
equivalent forms. First, to compare with the quantum calculations of section 4, we will use 

= - ( l - G )  1 
2 

which has lowest terms that turn out to be 

J s  (26) 
5 55 3215 p- 92513 
6 1 0 8 ~ 5 ' ~ - ~  1 3 9 9 6 8 6  

E = J5j - -Y - - 
Second, we will write the first few terms of the full classical Hamiltonian in terms of the 
good action variables J I  and J2: 

Summing up, we have a straightforward procedure to generate as many terms as desired 
of these convergent expansions that will be used in section 4.2 to discuss direct Bob- 
Sommerfeld quantization. 

3. Separation of the quantum Hamiltonian 

3.1. The Bargmann represmtation 

In this section we will work with the quantum Hamiltonian written in the Bargmann 
representation, where the canonical operators x and p are replaced by multiplication and 
derivation operators with respect to a complex variable z according to the rules 

1 
- ( x + i p ) + z  & 

1 d 
- ( x  - ip) + - .Jz dz 

and the normalized harmonic oscillator eigenfunctions are given by 

(30) 
2" 

f"(Z) = - n = 0 ,  1, .... f i  
The transformed Hamiltonian is 
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and the corresponding unperturbed eigenvalues are 

E::;, =nl +2nz + f nr, nz = 0.1,. . . . (32) 
Incidentally, if one drops the constant terms in equation (31) and recalls the correspondence 
z t3 at ,  d/dz e a between the second quantization formalism and the Bargmann 
representation, the equivalence between this Hamiltonian and the Hee of equation (1) 
becomes immediately obvious. 

Since Ho and V commute, the eigenvalues of H are linear functions of the coupling 
constant g. Furthermore, any non-degenerate eigenvector of HO is automatically an 
eigenvector of the total Hamiltonian. as is the case of the ground state (n1,nZ) = (0,O) 
and the first excited state (n l ,nz )  = (1,O). On the other hand, a diagonalization of the 
perturbation V within each degenerate subspace nl + 2nZ = constant is required to obtain 
the remaining total eigenvalues and eigenvectors. To simplify the notation a little we will 
consider explicitly only the case of n,  + 2nz even, 

(33) ELY:, = 2k + 2 2 
and point out the trivial modifications for odd nl + 2nz in section 3.4. 

in z: and 12 of degree k :  

(34) 
and the action of the perturbation within this subspace is given by a (k + 1) x ( k  + 1) 
self-adjoint tridiagonal matrix whose non-vanishing elements are 

The key observation is that the perturbation eigenvectors are homogeneous polynomials 

p ( z 1 ,  ZZ) = clz:k + C z z p - ~ z z  + ' ' ' + ck+lz: 

4,i+1- (') - V(') C + I , L  . = d(2  - 2i + 2 ) ( 2  - 2i + I )  i = 1, . . . , k.  (35) 
Several properties of this matrix representation have been extensively studied, but our 
analysis will rely only on the elementary fact that for any k the eigenvalues are symmetrically 
distributed around zero. This property is the quantum analogue of the symmetry of the 
classical motion around E = 0 discussed in section 2. 

3.2. Reduction to a one-dimensional Schrodinger operator 

Since the diagonalization of the perturbation V mentioned above is equivalent to the solution 
of the differential equation 

and the polynomials in equation (34) are homogeneous in z: and ZZ, one can reduce the 
problem to an ordinary differential equation by the following change of dependent and 
independent variables: 

(37) 2 = 21/22 

P(Zl1ZZ) = ZkzP(Z) (38) 

Z 

where P ( z )  is again a polynomial of degree k in z. Substitution of these expressions into 
equation (36) gives the following equation for P ( z ) :  

P"(z) + P ' ( N 2  - zz) + P(z)(kz - E )  = 0 

,x = ZllZ (40) 
P ( z )  = @(x)e""'6. (41) 

(39) 
which, in turn, can be put into Schrodinger form with the standard change of variables 
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The resulting eigenvalue problem on the real line is 

G Alvarez and R F Alvarez-Estrada 

3.3. Quasi-exactly solvable systems 

The Schrodinger equation (42) has an infinite number of bound states of which, by 
construction, the k + 1 lowest even eigenvalues coincide with the eigenvalues of the matrix 
V ( k )  (the only eigenvalues relevant for the original second harmonic generation problem). 
The corresponding wavefunctions can also be written explicitly: 

$;(x) = e-x‘’16Pi(x2) i = 0, . . . , k (43) 

where the coefficients of the polynomials f; (all of them of degree k )  are the coefficients 
of the corresponding eigenvectors of the matrix V(’). It is interesting to note that higher 
eigenvectors do not have this simple structure of polynomial times an exponential, and 
there are no closed formulae for the associated eigenvalues. These potentials have been 
extensively studied by Turbiner and Ushveridze [12, 131, who paid special attention to the 
underlying algebraic structure that allows them, among other things, to give the transparent 
explanation of the phenomenon which we briefly reproduce here. Let us introduce the two 
operators 

a+ = x 
1 d 

a- = -x3 + - 
4 dx 

(44) 

(45) 

with commutation relation 

[a-, a+] = I (46) 

and rewrite the Schrodinger Hamiltonian in equation (42) as 

H~ = p+(a+a- 1 2  - 2) -a ! .  

Consider now the ‘vacuum’ state IO) defined by the condition 

a-10) = 0 

(47) 

(48) 

(in coordinate representation it is just a constant times exp(-x4/16)) as well as the 
recursively defined states 

In) =a;10). (49) 

These states In) are not eigenstates of the Hamiltonian, but in terms of them its action is 
particularly simple: 

(50) Hkln) = (fn - k)ln + 2) - n(n - 1)ln - 2) 

and shows why the states n = 0.2.4,  . . . , 2 k  are decoupled from n = 2k + 2, . . ., since for 
n = 2k the coefficient of In + 2) vanishes. 

However, it is not the quasi-exactly solvable character of equation (42) what we will 
exploit in the following section, since the ‘quasi-exact solvability’ means that to calculate 
these lowest eigenvalues and eigenvectors one has to solve precisely the matrix equation 
we are trying to study. Instead, we will rescale the Schradinger equation (42) and perform 
a JWKB semiclassical analysis in the limit of large k .  
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3.4. Modiftcations for odd n ,  + 2122 

In this subsection we will succinctly point out the modifications to handle the case of 
unperturbed eigenvalues of the form 

EAYAl = 2k + 1 + 4. (51) 

p(z1.zz) =c,zf"" +c2z"zz+'"+c~+1zlz"; (52) 

The eigenvectors in the Bargmann representation now have the structure 

and the action of the perturbation within this subspace is again given by a (k + 1) x (k + 1) 
self-adjoint tridiagonal matrix which has non-vanishing elements 

Vi!;:, = V/:i,i = Ji(2k - 2i + 3)(2k - 2i + 2) i = 1 , .  . . , k .  (53) 
The appropriate change of variables is 

2 z=z,/zz 
P(Z1,ZZ) = ZlZ$P(Z) 

(54) 
(55) 

where P (z) is again a polynomial of degree k in z. This transformation reduces equation (36) 
to 

(56) 4Zf"(Z) + P ' ( i ) ( 6  - z') + P ( i ) ( k z  - E )  = 0 

which, in turn, can be put into Schrodinger form with the substitution 

The resulting Schrodinger equation on the real line is 

- @ " ( x )  + [ A x 6  - (k + :)xz + E ] @ ( x )  = 0 (59) 
from which it follows that the case of odd nl + 2nz = 2k + 1 can be recovered from the 
even nl + Znz = 2k by formally replacing everywhere k + k + f .  

4. Semiclassical analysis of the eigenvalues 

4.1. The JWKB expansion 

Our goal in this section is to obtain asymptotic formulae for the eigenvalues valid in the 
limit of large unperturbed energies, i.e. of large k .  A zeroth-order implicit equation for 
these eigenvalues was obtained in [9]  via Einstein-Brillouin-Keller quantization of the 
two-dimensional Hamiltonian (2). Our approach, a MiKB analysis of the one-dimensional 
equation (42). allows us to obtain systematically explicit convergent expansions ibr the 
zeroth-order as well as higher-order corrections to the energy and other magnitudes of 
physical interest (e.g. the density of states). With this aim, we rescale the Schrodinger 
equation (42) replacing x by 2h-'l4x, where 

h = ( i k  + I ) - '  

-h2@"(x) +[U@) - 8 & ] @ ( x )  = 0 

(60) 

(61) 

will play the role usually assumed by h.  The resulting equation is 

with the potential 

~ ( x )  = 16x6 - 12x2 + 4 
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and the spectral parameter E given by 
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&=$(1-h3/ ’E  1. 
We write the wavefunction in exponential form 

so that S(x )  must be a solution of the Riccati equation 

S(X)’ + hS’(x) = U(X) - 8“. 

Expansion of S ( x )  as a power series in h ,  

reduces the solution of the Riccati equation to a recursive evaluation of the S,. In particular 
one obtains 

so = Jm 
I d  
2 dx 

2 dx2 

SI = ---In SO 

s, = --so 1 - I / z ~ s - ’ / z  

where we have tried to isolate total derivatives of single-valued functions which will not 
contribute to the quantization condition. This condition is given by Dunham’s formula [16], 

(72) $ S(x) dx = nh n = 0, 1,. . . , [ ( k  - l)/2] 
2a i 

where the path of integration is a loop enclosing the classical turning points, the square 
brackets denote integer part, and the quantum number n has been restricted to the physically 
relevant states with E 2 0 (or 0 < E < 4). Furthermore, in our case the potential u ( x )  
defined in  equation (62) is a double well and, for the lowest eigenvalues, there are four 
classical turning points. Since we are interested in the limit of large k ,  we will first neglect 
tunnelling and defer an estimate of the exponentially small correction to section 4.4. 

The classical turning points are the roots of a cubic polynomial in x z ,  and will be 
denoted by &&, &&, and 2~4, where a, b and c can again be conveniently written in 
terms of Gauss hypergeometric functions: 

The two turning points in the right well are +d and +& To lowest order in h, the 
Riccati equation is equivalent to a classical Hamilton-Jacobi equation, and the classical 
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action can be evaluated in terms of a hypergeometric function of two variables (or Appell 
function) Fl [17,18], 

where the path of integration has been deformed to the segment between the classical turning 
points. Equation (77) can be readily expanded in a convergent power series in E ,  which 
has first terns 

(78) 5 205 22715 + 983213 & 5 , ,  , J1/?=&+ - -E2+ ---E3 + - 
18 972 104976 3779 136 

and inversion of this series yields 

(79) J' - _ _ _ ,  
92513 

J 4  - 5 55 3215 
6 1081/5J3-i1664 1399681/5 

E =  f i J  - - J 2  - - 

Note that this equation is precisely the classical normal form (26) obtained in section 2, 
and, to this order in h, quantization amounts to the substitution J = nh. Its radius of 
convergence can be determined by an argument given initially by Turchetti I191 in a related 
context. It is the value of the classical action J corresponding to the separatrix (in our case 
E = 0 or E = 4). In this case the integration in equation (76) is elementary and the radius 
of convergence turns out to be f. 

Since SI is proportional to the logarithmic derivative of SO, the next term in equation (72) 
is simply 

L f S j ( x ) d x = - -  h 
2x i 2 

and to this order, quantization is equivalent to the substitution J = (n + f ) h  in the classical 
series. Note that all the bound states with E >.O (i.e. n = 0, 1, . . . , [k/2 - 11) fall within 
the radius of convergence of equation (26). since (k/2)/(4k/3 + 1) e %. Although at this 
point there are contributions from orders zero and one, the resulting semiclassical series 
(i.e. the classical series with J replaced by (n + i ) h )  will be denoted by &o(J).  

We will finish this subsection by giving the first-order approximation to another 
magnitude of practical interest: the density of states p(E). It can be readily calculated 
by differentiating the quantization condition (76) with respect to the energy, with the result 

where it is understood that in the right-hand side the spectral parameter E has been expressed 
in terms of E with equation (63). Numerical calculations have shown that in the range of 
physical interest, equation (SI) gives a very accurate approximation to the density of states. 
On the other hand, although it is straightforward to expand equation (81) as a power series 
in E:  

p(E)  = -- 
4 4 3  

many terms of this series are required to reproduce accurately the characteristic dip of the 
density of states at E = 0. 
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4.2. Direct quantization in action variables and the classical dynamics resisited 

Since in section 2 we have been able to write. the classical Hamiltonian in terms of good 
action variables, it is interesting to compare a direct Bohr-Sommerfeld quantization of this 
Hamiltonian (see [lo, 11,151) with the JWKB mult obtained in the previous subsection. In 
the classical Hamiltonian (27)  the action Jz is half the unperturbed energy, i.e. one should 
quantize (including the Maslov index) 

J z +  + ( 2 k + ; )  
while Jl can be quantized with the usual rule 

J l + n + ~ .  I 

With these replacements, 

-+ J=l 3 5  n + l  
4J2 4 k / 3 +  1 (85) 

in agreement with the first-order JWKB result. 
Although we have arrived at the one-dimension; Schradinger equation (42) mainly 

guided by the homogeneity of the polynomials in the Bargmann representation, the 
correspondence between classical and quantum series hints at the possibility of looking 
for a canonical transformation from (6'1, j l )  to new variables (x, p )  in which equation (13) 
would be the exact classical analogue of the Schrodinger equation (42). In fact, if one traces 
back the transformations in equations (28), (29). (37), and (40) ,  their classical analogue is 

and the corresponding conjugate momentum turns out to be 

One can easily check that this is a complex canonical transformation, 
ax ap ax ap 
a61 all ajl ae, 

[x, p ]  = -- - -- = I 

and that in these new variables (x, p ) ,  the classical perturbation Hamiltonian of equation (13) 
is precisely 

(89) 2 x6 p t - j2xz+ E = 0 

that is to say, the formal classical analogue of equation (42). 

4.3. Higher-order quantum corrections 

The general method to evaluate higher-order terms can be summarized as follows. For odd 
N > 3 ,  the S, are total derivatives of single-valued functions, and do not give acontribution 
to the quantization condition. For even N > 2, repeated integration by parts can be used to 
reduce the integrals to equivalent expressions that can be calculated by shrinking the path 
to the segment between the classical turning points [ Z O ] .  The next two orders are 

S * ( X )  dc = - 
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and 

dx (92) 

(93) 

dx--$ 1 u"(x)= 
S4(X) dx = - 

128 (IJ(X) - 
- 1 d' 5u'(x)u'"(x) - 7u"(x)' d r ,  

1474560 { (U@) - 8&)1/z 
- 

The integrals which appear in these fonnulae can now be evaluated, shrinking the path to 
the interval between the two branch points, and turn out to be particular instances of 

The last step is to expand the spectral parameter & as a power series in h. Since only even 
powers of h are non-zero in the left-hand side of equation (72) (except the first which gets 
absorbed in the definition of J), only even powers of h occur in the expansion: 

E = & o ( J ) + h 2 & z ( J ) + h 4 & 4 ( J ) + . . .  . (96) 

The result of collecting equal powers of h in the quantization condition is that the &N 

with N z 0 are given explicitly in terms of hypergeometric functions and their derivatives 
evaluated at &(J). Only the classical series &(J)  is given as the soIution of an implicit 
equation. Moreover, all the substitutions of power series are carried out inside their radii 
of convergence, the final radius of convergence being determined by the above-mentioned 
argument for &o(J). That is to say, one can generate as many terms as desired of the 
convergent (with radius of convergence 1 JI e :) series expansions for each of the quantum 
corrections 

By way of example, table 1 shows the exact values of the first coefficients for Eo, 6 and 
&4. 

4.4. Tunnelling correction 

As we mentioned in  section 4.1, the potential (62) is a double well, and up to this point we 
have neglected tunnelling between the two wells. The main consequence of this assumption 
is that the asymptotic formulae for the eigenvalues that we have derived so far lose accuracy 
as the eigenvalues get closer to the top of the barrier between the two wells ( E  = 0). The 
next degree of approximation is to realize that in fact there are two independent, degenerate 
IWKB solutions-one in each well-that give rise to two linear combinations, even and 
odd, separated in energy by an exponentially small quantity. These exponentially small 
corrections to the JWKB eigenvalues have been extensively studied [21-231 but for our 
practical purposes we will use the simplest formula: 

where the subindex in &KB means that the integrals have to be evaluated for the values 
of the parameter & given by the JWKB expansions, and the negative sign of the correction 
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13207 -- 5 
144 14929920 

25 41 177 
72 622 080 

2185 2 9 18 699 
216 I866240 

140845 44245 349 
432 746496 

78925 396904 321 
8 186624 

- 0 0  

- - I -18 

- - 2 90 

- - 3 330 

- 4 3215 

92513 2210 924 345 4943621 SO0633 
7776 67 I84 640 5 -  2 

2398025 20700155315 500 275 357652683 
2592 201 553920 6 -  3 

90965 185 
7 -  

6 
20694SZS 533215 

93312 
I3 245 692 055 81 8 959 

161243136 

21881438645 I287784640196 175 1942747684044029369 
72 209 952 725594 112 8 

16413482959885 569337606784 188275 5W l08S10351 164506071 
2592 3359232 5 804752 896 9 

reflects the even nature of the eigenstates in which we aTe interested. Once more the 
integrations can be explicitly done in terms of hypergeometric functions, and the result is 

Note that series expansions are not required to calculate A&: one just uses the raw JWKB 
eigenvalues and evaluates the functions. We will briefly study the effect of this exponentially 
small correction for unperturbed energies in the region of physical interest in the next 
subsection. 

4.5. Double-series strucrure of &: a numerical example 

The spectral parameter E is in fact given by a double series in (n + i) and h: 

Equation (96) is the result of summing first in the index i in equation (100). i.e. evaluating 
first the convergent series of equation (97). From the practical point of view, however, it 
may seem more natural to use an approach closer to perturbation theory, and reorder the 
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Table 2. Accuncy of three asymptotic approximations lo the eigenvalues of VIk )  

n To order k - 3 / 2  From table I Table I plus A& Exact 

k = 12 
0 63.069266469 63.070866350 63.070866350 63.070 868400 
I 49.594861 695 49.627768 140 49.627768 141 49.627777367 
2 36.928909005 37.087 108671 37.087 108921 37.087 146 105 
3 25.071 408399 25.539 187061 25.539230 148 25.539659444 
4 14.022 359875 15.119299303 15.123 270989 15.127 712933 
5 3.781763435 6.049470261 6.231 155370 6.210552602 
6 -5.650380921 - 1.280559236 0.000000000 

P = 24 
0 179.705314047 179.705891773 179.705891773 179.705891963 
I 160.385 824 158 160.397 377037 160.397377037 160.397 317 687 

9 26.719223762 30.670108831 30.670360644 30.709 145625 
IO 12,622063551 18.319486591 18.330845882 18.458201 845 
I I -0.894837806 7 160597489 7.489282348 7.767963489 
12 -13.831 480310 -2.606449488 0.000000000 

k = 5 0  
0 542.435604220 542.435798541 542.435798541 542.435798558 
1 5 14.345 210 971 5 14.349045 051 5 14.349045 051 5 14.349 045098 

20 5761?66?4608 71 535 164368 71 535 165 1.19 71 737519406 
21 376336-10341 54223358421 54223392331 54588829619 
22 1805?8765?0 37737542726 37738751327 38397485449 
23 -I 122666835 22 139367300 22 173881976 23358651705 
24 - 19 892 989 75. 7 500 31 3 286 8 ~ 2 9 3 3  808 IO M3 303431 
25 -38?5809?217 -6096700732 0 000000000 

~ 

double series by increasing powers of I l k :  
m 

where 

This double-series structure is typical of the transition between classical and quantum 
mechanics, and illustrates the relation between JWKB expansions and Rayleigh-Schrodinger 
perturbation theory (see [24]). Since a concrete example helps to fix the pattern, let us 
remove the intermediate variables and write the asymptotic behaviour of the eigenvalues 
of the perturbation energy E to order O(k-’/’) as a function of the unperturbed energy 

= 2k + 5 .  The result is 

Since all the asymptotic approximations we have derived are valid in the limit of large 
k ,  it is still necessary to study their accuracy for unperturbed energies in the range of 
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physical interest. We have performed an extensive numerical analysis, of which table 2 is 
a representative example. It shows (some of) the non-negative perturbation eigenvalues for 
k = 12, 24 and 50 (typical test cases studied previously in the literature [l]) calculated by 
four different procedures. The second column contains the values given by equation (103), 
the third column has been calculated with all the coefficients in table 1, the fourth column 
equals the third column plus the tunnelling correction of equation (99), and the last column 
shows the exact eigenvalues calculated by numerical diagonalization of the corresponding 
matrices V@). From this and similar calculations the following trends can be inferred. Even 
for relatively moderate values of k the highest eigenvalues (n = 0, 1,. . .) are accurately 
approximated by the simplest asymptotic formulae. The accuracy gradually decreases as we 
consider eigenvalues closer to E = 0, to the point that equation (103) incorrectly reports the 
last three eigenvalues of V(’O’ as negative-the effect is more obvious for large values of k ,  
when many states pile up close to the top of the barrier. The main factor to restore this lost 
accuracy are the higher-order terms and, in particular, the higher-order terms of & ( J ) .  The 
exponentially small correction AE is only significative for eigenvalues very close to E = 0 
(for example, the next to last in the fourth column of table 2); furthermore, this correction 
can be used only when the JWKB is sufficiently accurate so as to give a positive approximate 
eigenvalue-hence the missing values in this column. Although the approximation breaks 
down for E = 0, this does not raise a problem, since it is known to be an exact eigenvalue 
whenever k is even. 

G Alvarez and R F Alvarez-Estrada 

S. Summary 

We have carried out a Ni-3 semiclassical analysis of a system of two quantum oscillators 
with cubic coupling in the creation and destruction operators, which provides the usual 
model for second hasmonic generation in  nonlinear optics. An essential feature of this 
model is that the unperturbed (harmonic) part and the perturbation commute, opening up 
the possibility of explicit separation of the Hamiltonian into two one-dimensional problems. 
We have been able to perform this separation both classically and quantum mechanically 
and, in both cases, the perturbation is equivalent to a highly nonlinear one-dimensional 
oscillator. Specifically, the main results of our analysis are as follows. 

(i) There is a linear canonical transformation which simultaneously removes the two- 
to-one resonance and separates the classical Hamiltonian. 

(ii) A method has been given to generate as many terms as desired of the classical 
normal form of the Hamiltonian. 

(iii) Working in the Bargmann representation, the quantum version of the model has 
been shown to be equivalent to a one-dimensional Schrodinger operator with a sextic quasi- 
exactly solvable polynomial potential. 

(iv) We have performed a JWKB analysis of this one-dimensional Schrodinger equation 
which provides a procedure to generate as many terms as desired of the convergent series 
for the quantum corrections (numerical values are given for the first ten coefficients up to 
fourth order). 

(v) The BohrSommerfeld quantization rules applied to the classical normal form give 
a convergent series which coincides with the first order JWKB result. Furthermore, the 
classical perturbation Hamiltonian is equivalent, via a complex canonical transformation. to 
the classical analogue of the one-dimensional Schrodinger operator mentioned in item (iii). 

(vi) We have briefly discussed the accuracy of the asymptotic formulae for the 
eigenvalues and their breakdown for eigenvalues close to zero, due to the coalescence 
of classical turning points. 
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As a final remark, we would like to point out the interest of performing a similar 
semiclassical study of the eigenfunctions and time evolution of this system. Of particular 
relevance are the results in [3], where the aperiodicity of the time evolution is related to 
the non-uniform spacing of the eigenvalues (for k fixed) as a function of a, i.e. to the terms 
beyond the first and second order in our asymptotic expansions. 
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